Info
Theoretische Chemie
Titelbild: Das Titelbild zeigt die wesentlichen Pigmente des Lichtsammelkomplexes LH2 von Purpurbakterien. Die möglichen Energi transferpfade (mit Pfeilen angedeutet) werden am Institut für Physikalische und Theoretische Chemie sowie am MPI für Biophysik in Frankfurt studiert. Dazu werden modernste Methoden der Strukturaufklärung (Arbeitsgruppe Kühlbrandt, MPI), Spektroskopie (Arbeitsgruppe Wachtveitl, IPTC) sowie moderne quantenchemische Verfahren (Arbeitsgruppe Dreu, IPTC) verwendet.
Inhaltsverzeichnis

1 Editorial .. 4

2 Nachrichten .. 4
 2.1 Tagungsvorschau .. 4
 2.1.1 Januar- Dezember 2006 4
 2.1.2 Januar- Dezember 2007 5
 2.2 Klatsch und Tratsch 5
 2.3 Meldungen .. 6

3 Verschiedenes 6
 3.1 Mitgliederversammlung der AG Theoretische Chemie beim 41. Symposium
 für Theoretische Chemie in Innsbruck 6
 3.2 Rückschau: Symposium für Theoretische Chemie 2005 in Innsbruck 9
 3.3 Stellenanzeigen .. 16

4 Arbeitsgruppen stellen sich vor 17
 4.1 Theoretische Chemie an der Universität Bielefeld 17
 4.2 Theoretische Chemie an der Universität Oldenburg 19
 4.3 Theoretische Chemie an der RWTH Aachen 22
1 Editorial

Liebe Kolleginnen und Kollegen,

Sie halten die erste Ausgabe des Infos TC in Ihren Händen, welches wir für Sie zusam-
mengestellt haben. Dieser Ausgabe werden noch zwei weitere aus Frankfurt folgen, im
April und November 2006, und wir hoffen, mit vielen Beiträgen von Ihrer Seite rechnen
dürfen. Vor allem in den Rubriken „Nachrichten, Klatsch und Tratsch, Meldungen“
sind wir für Hinweise, Anregungen und kleine Beiträge dankbar. Wir hoffen, Ihnen eine
interessante Zusammenstellung wichtiger Neuigkeiten aus dem Umfeld der AG Theoreti-
sche Chemie zu liefern.

Gerhard Stock
Andreas Dreuw

2 Nachrichten

2.1 Tagungsvorschau

[siehe auch die Zusammenstellung http://www.tu-berlin.de/insi/theofach/tagungen.html
 von Prof. Dr. K. Helfrich]

2.1.1 Januar-Dezember 2006

- 14.-22.02.2006, Jülich:
 NIC Winter School: „Computational Nanoscience: Do It Yourself!“
 www.fz-juelich.de/wscn

- 14.-17.02.2006, Mariapfarr, Salzburg, Österreich:
 Arbeitstagung fr Theoretische Chemie: „Molecular Properties“
 http://www.kfunigraz.ac.at/tchwww/sax/maria pfarr/home_d.html

- 13.-17.03.2006, Frankfurt a. M.:
 Frühjahrstagung des Arbeitskreises Atome, Moleküle, Quantenoptik und Plasmen
 (AMOP) der DFG
 http://www.dpg.tagungen.de/info

- 19.-22.03.2006, Hamburg:
 Chemiedozententagung
2.1.2 Januar-Dezember 2007

- 29.05-03.06.2007, Budapest, Ungarn:
 Molecular Quantum Mechanics - Analytic Gradients and Beyond:
 An International Conference in Honor of Prof. Peter Pulay
 http://www.ccqc.uga.edu/pulay

2.2 Klatsch und Tratsch

- Prof. Dr. Max Holthausen hat einen Ruf auf eine W3-Professur im Institut für
 Anorganische und Analytische Chemie der Universität Frankfurt angenommen.

- Prof. Dr. Markus Elstner hat einen Ruf auf eine W2-Professur im Institut für Phy-
 sikalische Chemie der Technischen Universität Braunschweig erhalten.

- Prof. Dr. Christof Hättig hat einen Ruf auf eine W2-Professur an die Ruhr-Universität
 Bochum angenommen.

- Priv.-Doz. Dr. Frank Neese hat einen Ruf auf den Lehrstuhl für Anorganische Che-
 mie an der Universität Heidelberg erhalten.
2.3 Meldungen

- Prof. Dr. Jaroslav Kouteky verstarb am 10. August 2005 im Alter von 82 Jahren. Er war Emeritus am Physikalisch-Chemischen Institut der Freien Universität Berlin.

3 Verschiedenes

3.1 Mitgliederversammlung der AG Theoretische Chemie beim 41. Symposium für Theoretische Chemie in Innsbruck

Montag, 5. September 2005 Beginn: 18.00 Uhr

Tagesordnung:
1. Genehmigung der Tagesordnung
2. Protokoll zur Mitgliederversammlung 2004
3. Bericht des Vorsitzenden
4. Kassenbericht und Wahl des Kassenprüfers
5. Symposium 2006 und 2007
6. Wahl der Hellmann-Jury
7. Verschiedenes

Protokoll:

TOP 1
Die vorgeschlagene Tagesordnung wird ohne Änderung akzeptiert.

TOP 2

TOP 3
Im Dezember 2004 wurde von den Mitgliedern der AGTC ein neuer Vorstand gewählt. Bei der Briefwahl wurden 121 Stimmen abgegeben, was einer Wahlbeteiligung von 61 % entspricht. In den Vorstand gewählt wurden (in alphabetischer Reihenfolge); W. Domcke, G. Frenking, J, Gauss, G. Seifert, H.-J. Werner. Die Trägergesellschaften haben als ihre

Die Jahresrückblicke 2005 in den Mitteilungen der GDCh ("Blaue Blätter") werden von S. Schmatz, Göttingen (Reaktionsdynamik), F. Neese, Mühlheim (Theoretische Bioanorganische Chemie) und Ch. Hättig, Karlsruhe (Coupled-Cluster-METHODEN) verfasst.

TOP 4

Die Mitgliederversammlung nimmt den Bericht von Herrn Mark zustimmend zur Kenntnis und dankt Herrn Mark für die sorgfältige Arbeit. Herr Mark wird einstimmig als Kassenprüfer wiedergewählt.
TOP 5

TOP 6
Vom Vorstand wurden folgende Kandidaten für die Wahl, bzw. Wiederwahl vorgeschlagen und haben ihre Bereitschaft zugesagt: L. Cederbaum (Heidelberg), A. Görling (Erlangen), W. Klopper (Karlsruhe), U. Manthe (Bielefeld), C. Marian (Düsseldorf) und H. Lischka (Wien). Von der Mitgliederversammlung wird J. Hutter (Zürich) nominiert.

TOP 7
entfällt

Ende der Mitgliederversammlung: 18.30 Uhr.

Gez. W. Domcke
3.2 Rückschau: Symposium für Theoretische Chemie 2005 in Innsbruck

Das diesjährige Symposium war schwerpunktmäßig dem Thema „Chemical Simulati-

Abbildung 1: Bernd Rode mit seinem Organisationsteam

ons from Small Molecular Clusters to Liquids and Biopolymers“ gewidmet, doch waren auch Beiträge aus anderen Teilgebieten der Theoretischen Chemie willkommen. In der Tradition des STC liegend wurden die meisten der insgesamt 43 Vorträge von jüngeren Hochschullehrern und dem akademischen Nachwuchs gehalten, zu denen sich eine kleine Zahl von Plenarvorträgen etablierter Wissenschaftler gesellte. Hinzu kamen rund 120 Posterbeiträge, die in einem erfreulich offennrömigen und ansprechenden Rahmen in zwei Sitzungen zu intensiven Diskussionen anregten.

9
Abbildung 2: Wilfred van Gunsteren zeigt Möglichkeiten und Grenzen der Computersimulation biomolekularer Systeme auf

Simulation und Dynamik

Abbildung 3: Graham Richards referiert über Mustererkennung in der Medikamentenentwicklung

11
Enrique Marcos Sanchez (Sevilla) an Hand von Pd$^{2+}$, Pt$^{2+}$ und Actinoidoxiden in Wasser.

Abbildung 4: Filipp Furche berichtet über TDDFT-Methoden

DFT- und ab initio-Methoden: Entwicklung und Anwendung

Denis Usyvat (Regensburg) stellte eine lokale MP2-Methode für Kristalle vor. Neuere Entwicklungen auf dem Gebiet der Integralnäherungen für die Berechnung der Korrelationsenergie wurden von Christian Ochsenfeld (Tübingen) diskutiert. Über eine neue Methode zur Berechnung des Elektronentransports in molekularen Drähten berichtete Ulrich Kleinekathöfer (Chemnitz). Thomas Heine (Dresden) stellte eine Hybridmethode von DFT und tight-binding vor während Clemens Woywood (München) Quantum
Fluid Dynamics (QFD) als Alternative zu konventionellen Methoden für die Lösung der Schrödinger-Gleichung der Kernbewegung präsentierte.

Theoretische Spektroskopie

Die Polarisation und externe Felder unendlicher Ketten sind das Forschungsgebiet von Michael Springborg (Saarbrücken). Zwei Beiträge beschäftigten sich mit der Berechnung laserinduzierter Phänomene: Tillmann Klamroth (Potsdam) nutzt TD-CIS um die Dynamik der Elektronen in molekularen Systemen zu untersuchen; Oliver Kühn (Berlin) beschrieb die Quantendynamik eines Häm-CO-Modellkomplexes. Eine Methode zur Unterstützung der experimentellen Zuordnung von 2D-IR-Signalen für Peptide stellte Christoph Scheurer (München) vor. Ebenfalls auf die Schwingungsspektroskopie - mit Betrachtung gekoppelter Moden - stützte sich die Beschreibung der Potential-
Hyperflächen verschiedener durch Wasserstoffbrücken gebundene Systeme - von Marius Lewerenz (Paris) präsentiert.

Abbildung 5: Der Vorsitzende der AGTC, Wolfgang Domke, verleiht den Hans-Hellmann-Preis an Frank Neese

Hans G. A. Hellmann-Preis 2005

Abbildung 6: Empfang des Landes Tirol am zweiten Abend des Symposiums

Im zweiten Teil des Abends unterhielt Michael Tschuggnall von der Universität Innsbruck die Teilnehmer des Symposiums mit musikalischen Beiträgen aus der Popmusik Österreichs, die einen ungewöhnlichen und reizvollen Kontrast zum klassischen Teil bildeten.

STC 2006

Das STC wird an wechselnden Orten in zweijährigen Abständen in Deutschland und in jeweils vierjährigen Abständen in Österreich bzw. der Schweiz veranstaltet. Das STC 2006

Robin Haunschild, Ralf Tonner, Sebastian Metz (Marburg).

3.3 Stellenanzeigen

Doktorandenstelle in Theoretischer Chemie an der FU Berlin

In der Arbeitsgruppe für Theoretische Chemie (Prof. J. Manz) an der Freien Universität Berlin ist eine Doktorandenstelle (0.75 BAT IIa) zu besetzen. Unsere Gruppe arbeitet auf dem Gebiet der Quantenchemie, Quantendynamik und Laserkontrolle chemischer Reaktionen. Weitere Informationen unter: http://userpage.chemie.fu-berlin.de/manzwww. Bewerbungen richten Sie bitte an:

Prof. Dr. Jörn Manz und Monika Leibscher PhD
Institut für Chemie und Biochemie
Freie Universität Berlin
Takustr. 3
14195 Berlin
E-mail: jmanz@chemie.fu-berlin.de und monika@chemie.fu-berlin.de

Assistentenstelle an der Universität Erlangen-Nürnberg

Kontaktadresse:
Prof. Dr. Andreas Görling,
Lehrstuhl für Theoretische Chemie,
Universität Erlangen-Nürnberg,
Egerlandstr. 3, 91058 Erlangen
Tel.: +49(0) 9131 8528595,
Fax.: +49(0) 9131 8527736
Web: http://www.chemie.uni-erlangen.de/pctc/
Stelle als Nachwuchsgruppenleiter am DFG-Forschungszentrum “Funktionelle Nanostrukturen” in Karlsruhe

Kontaktadresse:
Prof. W.M. Klopper
Chair of Theoretical Chemistry
Institute of Physical Chemistry
University of Karlsruhe (TH)

4 Arbeitsgruppen stellen sich vor

4.1 Theoretische Chemie an der Universität Bielefeld

Sekretariat (Christel Köhler) ist halbtags besetzt.

Im Bereich der Photochemie bzw. Photophysik wird die Dynamik ultranschneller nichtadiabatischer Übergänge untersucht, die durch konische Durchschneidungen der elektroni- nischen Potentialflächen verursacht werden. Quantendynamische Studien, die Spektren, Populationsdynamik und eventuelle Reaktionsprodukte beschreiben, werden dabei durch die Entwicklung von ab initio Potentialflächen unterstützt.

In der Arbeitsgruppe Andrae werden einerseits elektronische Struktur und Gleichgewichts- geometrien von Polyoxometallaten und Potentialflächen von elektronisch angeregten In- terhalogenverbindungen berechnet und verknotete Kohlenwasserstoffe und Schwefelketten charaktisiert. Andererseits beschäftigen sich methodische Entwicklungsarbeiten u.a. mit basisfreien ab initio Verfahren und relativistischen Rechnungen.

Die Computerausstattung der Theoretischen Chemie besteht aus einem Cluster mit der- zeit 10 Quad-Opteron-Knoten (eine zweite Ausbaustufe wird voraussichtlich im nächsten

Im Masterprogramm bietet sich die Möglichkeit, den Schwerpunkt “Theoretische Chemie und Computeranwendungen” zu wählen. Dieser Schwerpunkt beinhaltet im Pflichtprogramm: Fortgeschrittene Theoretische Chemie I (Reaktionsdynamik und Spektroskopie, 2V+2Ü, 7.5 LP), Fortgeschrittene Theoretische Chemie II (Gruppentheorie und Korrelationsmethoden, 2V+2, 7.5 LP) und ein dreimonatiges Forschungspraktikum (15 LP). Daneben besteht die Möglichkeit z.B. ein Programmentwicklungspraktikum und Grundvorlesungen in Theoretischer Physik zu belegen.

Weitere Informationen zur Bielefelder Theoretischen Chemie finden Sie unter: www.uni-bielefeld.de/chemie/tc/.

Uwe Manthe, Bielefeld

4.2 Theoretische Chemie an der Universität Oldenburg

Am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg ist das Fach Theoretische Chemie durch zwei Arbeitsgruppen vertreten. In der Arbeitsgruppe „Computerchemie“ (Leitung: Dr. Rainer Koch) werden hauptsächlich anwendungsorientierte Projekte der Organischen und Anorganischen Chemie bearbeitet, so dass im Jahr 2004 mit der Berufung von Thorsten Klüner auf eine neu eingerichtete W2-Professur für „Theoretische Physikalische Chemie“ das Methodenspektrum auf physikalisch chemische Fragestellungen erweitert wurde. Unsere Arbeitsgruppe ist international
besetzt und besteht zur Zeit aus Dr. Wai-Leung Yim (Postdoktorand), Erik Asplund, Sören Dittrich, Doron Lahav und Imed Mehdaoui (Doktoranden).

Die Expertise unserer Arbeitsgruppe umfasst die Entwicklung und Anwendung quantenchemischer und quantendynamischer Methoden für materialwissenschaftliche Fragestellungen, wobei insbesondere die Charakterisierung photochemischer Prozesse an Festkörperoberflächen zu unseren Forschungsschwerpunkten gehört. Unser Ziel ist es dabei, in enger Kooperation mit experimentell arbeitenden Gruppen, photochemische Elementarreaktion an Oberflächen möglichst detailliert zu untersuchen.

In der Regel stellen diese Potentialflächen die Grundlage für quantendynamische Simulationen (zeitabhängige Wellenpaketdynamik) dar, wobei unser Programmpaket insbesondere auf die optimale Ausnutzung von Massivparallelrechnern ausgelegt ist. So wird auf diesen Architekturen durch einen optimalen Lastenausgleich und eine hocheffiziente Kommunikationsstrategie eine nahezu lineare Reduzierung der Rechenzeit als Funktion der Prozessorenzahl auch bei Verwendung mehrerer 100 Prozessoren erzielt. Dies ermöglicht die routinemäßige Durchführung exakter quantendynamischer Rechnungen in einer Darstellung von z. Zt. 10^9 bis 10^{10} DVR-Basisfunktionen bzw. Gitterpunkten. Derartige stochastische Wellenpaketrechnungen auf multidimensionalen ab initio Potentialflächen ermöglichen ein weitgehendes Verständnis quantenzustandsaufgelöster experimenteller Resultate zur laserinduzierten Desorption als einfachste photochemische Elementarreaktion auf Oberflächen und erlauben darüber hinaus die Vorhersage neuartiger Effekte bei zukünftigen Experimenten.

Im Rahmen der stochastischen Wellenpaketrechnungen wird die elektronische An- und Abregung jeweils als vertikaler Übergang approximiert. Eine vollständige Beschreibung des Desorptionsprozesses sollte jedoch sowohl den anregenden Laserpuls als zeitabhängige Störung berücksichtigen als auch ein realistisches Modell für die nichtadiabatische Relaxation des Wellenpaketes beinhalten. In Zusammenarbeit mit Prof. Dr. Ronnie Kosloff (Jerusalem) wird in unserer Arbeitsgruppe zur Beschreibung dieser dissipativen Prozesse ein „Surrogate Hamiltonian“ eingesetzt, der die elektronische Relaxation durch Kopplung

Beide Arbeitsgruppen werden z. Zt. im Rahmen verschiedener Projekte durch die Deutsche Forschungsgemeinschaft, den Fonds der Chemischen Industrie, die Max-Planck-Gesellschaft, die Alexander von Humboldt-Stiftung und das Hanse Wissenschaftskolleg (HWK) finanziell unterstützt.

In der Lehre ist die Theoretische Chemie seit der Umstellung des Diplomstudiengangs auf Bachelor/Master-Studiengänge (ab WS 2005/2006) in mehreren Modulen vertreten. Im ersten Studiensemester existiert das Pflichtmodul „Theoretische und Quantitative Grundlagen der Chemie“ mit einer Vorlesung über Atombau und Chemische Bindung (2 SWS), einer Übung (2 SWS) und einem Praktikum (1 SWS). Die Studierenden werden so früh mit theoretisch-chemischen Fragestellungen vertraut gemacht. Im weiteren Verlauf des Bachelor-Studiengangs werden die Grundlagen der Quantenmechanik im Rahmen ei-
ner Vorlesung „Spektroskopie und Struktur der Materie“ (2 SWS) vermittelt und in einem Modul „Molekülchemie für Fortgeschrittene“ anhand der Vorlesung „Einführung in die Theoretische Chemie“ (2 SWS) mit Übungen (1 SWS) und einem computerchemischen Kurs (2 SWS) vertieft. Im Masterstudiengang sind zwei weitere Vorlesungen (je 2 SWS) mit Übungen (je 1 SWS) sowie ein forschungsnahes Praktikum in Theoretischer Chemie (2 SWS) vorgesehen.
Weitere Informationen zu den Arbeitsgruppen, den Forschungsprojekten und den Lehrveranstaltungen finden Sie unter

http://www.chemie.uni-oldenburg.de/pc/kluener/
http://www.chemie.uni-oldenburg.de/cc/

Thorsten Klüner, Oldenburg (Thorsten.Kluener@uni-oldenburg.de)

4.3 Theoretische Chemie an der RWTH Aachen

An der RWTH Aachen besteht schon seit den siebziger Jahren eine C3-Professur fr Theoretische Chemie, die bis 2004 dem Institut fr Organische Chemie zugeordnet war. Professor fr Theoretische Chemie war in dieser Zeit Jörg Fleischhauer. Mit der Berufung von Prof. Arne Lüchow wechselte die C3-Professur in die Physikalische Chemie. In Aachen ist darüberhinaus die Theoretische Festkörperchemie am Lehrstuhl von Prof. Richard Dronskowski im Institut für Anorganische Chemie vertreten sowie die theoretische organische Chemie durch apl. Prof. Gerhard Raabe am Institut für Organische Chemie.

Der Forschungsschwerpunkt der Arbeitsgruppe Lüchow ist die Entwicklung der Quanten-Monte-Carlo-Methode, einem stochastischen Verfahren zur direkten numerischen Lösung der Schrödingergleichung.

In der Arbeitsgruppe wird das QMC-Programm Amolqc entwickelt, das direkt Wellen-
funktionen von Turbomole, GameSS (US) und Gaussian verarbeiten kann. Das Programm steht interessierten Forschern kostenlos zur Verfügung.

Arne Lüchow